skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pfrender, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vogel, K (Ed.)
    Abstract Insect pests can rapidly accumulate in number and thrive in diverse environments, making them valuable models for studying phenotypic plasticity and the genetic basis of local adaptation. The mountain pine beetle (Dendroctonus ponderosae) is a major forest pest, and adult body size and generation time are 2 traits that vary among populations and directly influence reproductive success and outbreak dynamics. To identify regions of the genome linked to these 2 traits, we generated double-digest RAD sequencing data from an F2 intercross, using populations from 2 Y haplogroups with phenotypic and genetic differences in these traits. A high-density linkage map was generated and QTL analyses performed. We identified a single large effect QTL for generation time, associated with an adult diapause. The QTL spans the entire X chromosome, peaking over the evolutionarily conserved portion of the X. We were unable to detect a significant QTL for body size. Our linkage map identified putative inversions shared by parents that are absent in the published reference genome, with 3 putative inversions on chromosomes 2, 3, and the X. We also detected extensive regions of low recombination that were associated with low gene density, indicative of large pericentromeric regions. Surprisingly, we found that in our cross, F2 males inherited X chromosomes with significantly fewer crossover events than F2 females. Our findings provide information about the recombination landscape, the sex-biased inheritance of recombined X's, and the genomic location of a key trait in a major forest pest. 
    more » « less
    Free, publicly-accessible full text available May 7, 2026
  2. Abstract BackgroundMitochondrial genes and nuclear genes cooperate closely to maintain the functions of mitochondria, especially in the oxidative phosphorylation (OXPHOS) pathway. However, mitochondrial genes among arthropod lineages have dramatic evolutionary rate differences. Haplodiploid arthropods often show fast-evolving mitochondrial genes. One hypothesis predicts that the small effective population size of haplodiploid species could enhance the effect of genetic drift leading to higher substitution rates in mitochondrial and nuclear genes. Alternatively, positive selection or compensatory changes in nuclear OXPHOS genes could lead to the fast-evolving mitochondrial genes. However, due to the limited number of arthropod genomes, the rates of evolution for nuclear genes in haplodiploid species, besides hymenopterans, are largely unknown. To test these hypotheses, we used data from 76 arthropod genomes, including 5 independently evolved haplodiploid lineages, to estimate the evolutionary rates and patterns of gene family turnover of mitochondrial and nuclear genes. ResultsWe show that five haplodiploid lineages tested here have fast-evolving mitochondrial genes and fast-evolving nuclear genes related to mitochondrial functions, while nuclear genes not related to mitochondrion showed no significant evolutionary rate differences. Among hymenopterans, bees and ants show faster rates of molecular evolution in mitochondrial genes and mitochondrion-related nuclear genes than sawflies and wasps. With genome data, we also find gene family expansions and contractions in mitochondrion-related genes of bees and ants. ConclusionsOur results reject the small population size hypothesis in haplodiploid species. A combination of positive selection and compensatory changes could lead to the observed patterns in haplodiploid species. The elevated evolutionary rates in OXPHOS complex 2 genes of bees and ants suggest a unique evolutionary history of social hymenopterans. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Despite evolutionary biology’s obsession with natural selection, few studies have evaluated multigenerational series of patterns of selection on a genome-wide scale in natural populations. Here, we report on a 10-y population-genomic survey of the microcrustaceanDaphnia pulex.The genome sequences of > 800 isolates provide insights into patterns of selection that cannot be obtained from long-term molecular-evolution studies, including the following: the pervasiveness of near quasi-neutrality across the genome (mean net selection coefficients near zero, but with significant temporal variance about the mean, and little evidence of positive covariance of selection across time intervals); the preponderance of weak positive selection operating on minor alleles; and a genome-wide distribution of numerous small linkage islands of observable selection influencing levels of nucleotide diversity. These results suggest that interannual fluctuating selection is a major determinant of standing levels of variation in natural populations, challenge the conventional paradigm for interpreting patterns of nucleotide diversity and divergence, and motivate the need for the further development of theoretical expressions for the interpretation of population-genomic data. 
    more » « less
  4. The analysis and interpretation of high-dimensional biological data sets is a challenging task. Exploratory data analysis of count data produced by next-generation sequencing technologies presents a common hurdle to researchers. Biologists often find it difficult to get started with the analysis process, which can be time consuming and researchers are guided through the iterative steps of data assessment, processing, and analysis in a visual environment. The freeCount analysis framework takes advantage of the reactive features of R Shiny to deliver a set of modular and interactive tools and tutorials for the structured analysis and visualization of count data. 
    more » « less
  5. Abstract Studies of closely related species with known ecological differences provide exceptional opportunities for understanding the genetic mechanisms of evolution. In this study, we compared population-genomics data between Daphnia pulex and Daphnia pulicaria, two reproductively compatible sister species experiencing ecological speciation, the first largely confined to intermittent ponds and the second to permanent lakes in the same geographic region. Daphnia pulicaria has lower genome-wide nucleotide diversity, a smaller effective population size, a higher incidence of private alleles, and a substantially more linkage disequilibrium than D. pulex. Positively selected genes in D. pulicaria are enriched in potentially aging-related categories such as cellular homeostasis, which may explain the extended life span in D. pulicaria. We also found that opsin-related genes, which may mediate photoperiodic responses, are under different selection pressures in these two species. Genes involved in mitochondrial functions, ribosomes, and responses to environmental stimuli are found to be under positive selection in both species. Additionally, we found that the two species have similar average evolutionary rates at the DNA-sequence level, although approximately 160 genes have significantly different rates in the two lineages. Our results provide insights into the physiological traits that differ within this regionally sympatric sister-species pair that occupies unique microhabitats. 
    more » « less
  6. Abstract The field of genomics has ushered in new methods for studying molecular-genetic variation in natural populations. However, most population-genomic studies still rely on small sample sizes (typically, <100 individuals) from single time points, leaving considerable uncertainties with respect to the behavior of relatively young (and rare) alleles and, owing to the large sampling variance of measures of variation, to the specific gene targets of unusually strong selection. Genomic sequences of ∼1,700 haplotypes distributed over a 10-year period from a natural population of the microcrustacean Daphnia pulex reveal evolutionary-genomic features at a refined scale, including previously hidden information on the behavior of rare alleles predicted by recent theory. Background selection, resulting from the recurrent introduction of deleterious alleles, appears to strongly influence the dynamics of neutral alleles, inducing indirect negative selection on rare variants and positive selection on common variants. Temporally fluctuating selection increases the persistence of nonsynonymous alleles with intermediate frequencies, while reducing standing levels of variation at linked silent sites. Combined with the results from an equally large metapopulation survey of the study species, classes of genes that are under strong positive selection can now be confidently identified in this key model organism. Most notable among rapidly evolving Daphnia genes are those associated with ribosomes, mitochondrial functions, sensory systems, and lifespan determination. 
    more » « less
  7. Betancourt, Andrea (Ed.)
    Abstract Although obligately asexual lineages are thought to experience selective disadvantages associated with reduced efficiency of fixing beneficial mutations and purging deleterious mutations, such lineages are phylogenetically and geographically widespread. However, despite several genome-wide association studies, little is known about the genetic elements underlying the origin of obligate asexuality and how they spread. Because many obligately asexual lineages have hybrid origins, it has been suggested that asexuality is caused by the unbalanced expression of alleles from the hybridizing species. Here, we investigate this idea by identifying genes with allele-specific expression (ASE) in a Daphnia pulex population, in which obligate parthenogens (OP) and cyclical parthenogens (CP) coexist, with the OP clones having been originally derived from hybridization between CP D. pulex and its sister species, Daphnia pulicaria. OP D. pulex have significantly more ASE genes (ASEGs) than do CP D. pulex. Whole-genomic comparison of OP and CP clones revealed ∼15,000 OP-specific markers and 42 consistent ASEGs enriched in marker-defined regions. Ten of the 42 ASEGs have alleles coding for different protein sequences, suggesting functional differences between the products of the two parental alleles. At least three of these ten genes appear to be directly involved in meiosis-related processes, for example, RanBP2 can cause abnormal chromosome segregation in anaphase I, and the presence of Wee1 in immature oocytes leads to failure to enter meiosis II. These results provide a guide for future molecular resolution of the genetic basis of the transition to ameiotic parthenogenesis. 
    more » « less